Subject: | need help from people who know how to model vechicles
Posted by Deactivated on Thu, 15 Apr 2004 05:46:05 GMT

View Forum Message <> Reply to Message

http://renhelp.co.uk/?tut=15
http://renhelp.co.uk/?tut=33

Quote:How To Set Up a Renegade Vehicle

By Greg Hjelstrom

Introduction

Renegade uses a form of rigid body dynamics to simulate a wide variety of vehicles. All of the
geometric characteristics of a vehicle are determined directly from a model which is exported from
3ds-max. For example, the number, placement, and behavior of any wheels in the vehicle is

model: front-wheel drive, four-wheel steering, all-wheel drive, tank tracks, etc can all be set up.
Parameters such as the mass, engine strength, and suspension stiffness are set in the Renegade
level editor.

Balance

The first thing to do is to position your vehicle model such that its center of mass is at the origin in
MAX. In the X-Y plane, the CM (center of mass) should usually be placed exactly at the centroid
of all of the wheels in the vehicle. If the CM behind this point, the vehicle will lean backwards on
its suspension, if it is in front of this point, it will lean forward, etc. In the Z axis, the CM should be
placed some distance below the center of the object to help prevent tipping over when turning
corners.

Collision Detection (WorldBox)

As is the case with all objects in Renegade, you can use separate meshes for projectile collision
detection and physical collision detection. In the case of vehicles you have to use a single OBBox
named "WorldBox" for physical collision detection. (Note: physical collision detection is used
when the object is moving in the world, projectile collision detection is used when the code is
determining whether bullets hit the vehicle). For projectile collision detection, just use some
representative meshes from your model. The WorldBox OBBox must be linked to the origin of the
vehicle, and be aligned with the world axes. It should also be as small as possible while still
containing the wheels and bulk of the body of the vehicle. The physics code in renegade collides
with objects in a buffer zone near the surface of the worldbox so it should not completely contain
the model. Below is a screenshot of a WorldBox. Note how the WorldBox does not extend all the
way to the front, top or back of the vehicle.

Page 1 of 5 ---- Generated from Command and Conquer: Renegade Oficial Foruns


http://renegadeforums.com/index.php?t=usrinfo&id=156
http://renegadeforums.com/index.php?t=rview&th=9959&goto=80164#msg_80164
http://renegadeforums.com/index.php?t=post&reply_to=80164
http://renegadeforums.com/index.php

initial position (more on this later).

Wheels

Wheels are defined by adding bones with a particular naming convention into your model. All
vehicles, including VTOL aircraft, have wheels. At the bare minimum, there must be two bones
per wheel; one to define the contact point of the wheel and one to define the center of rotation of
the wheel. The code will use the pivot points of the wheel bones to determine the following things:
the initial position of the wheel, the radius of the wheel, the axis that the suspension travels along,
and the axis that the wheel rotates about. The two basic bones needed by each wheel are the
"WheelP" (wheel position) bone, and the "WheelC" (center) bone.

Below is a view of a wheel from the Humm-Vee model (with the WheelP bone selected). Note that
the z-axis points along the direction of travel of the suspension and the x-axis points forward.
Also, the pivot point of the WheelP bone must be contained inside the world-box. The initial
position of all wheels should be at their extreme topmost point; imagine that the vehicle has just
fallen off a skyscraper and landed directly on its wheels.

Attached to the wheel position bone, you need a bone which defines the center of rotation of the
wheel; the WheelC bone. Below is a view of a wheel with both bones set up. Again, the
important axis is the z-axis, it points along the axis of rotation of the wheel; in the "Top" viewport in
Max, the z-axis should be pointing down your monitor (for all four wheels).

The graphical representation of the wheel is then attached to the WheelC bone and will rotate and
translate as the vehicle is simulated. The simulation pays no attention to the graphical
representation of the wheel or even whether it exists or not. The hierarchical linkage for a simple
wheel should look like the one below. Note that the WheelC bone is attached to the WheelP
bone; not the other way around.

The 'E' at the end of each of the names above is a flag signifies that this particular wheel applies
the engine force at its contact point. Through this naming convention you can create four-wheel
drive, front-wheel drive, or rear-wheel drive wheels. Other flags that are available include:

wheel steering).

Page 2 of 5 ---- Generated from Command and Conquer: Renegade Oficial Foruns


http://renegadeforums.com/index.php

The complete naming convention for a wheel bone is below. The name always starts with the
word 'Wheel', followed by a single character and a two digit number (e.g. WheelP0O0). Following
the digits, any of the above flags can be added.

Wheel {P,C,T,F} {00} [S] [I] [E] [L] [R] [F]

Here are some examples of valid wheel bone names:

applied to it

with the vehicle

Advanced Wheel Settings

You may notice that there are two more types of wheel bones that have not been described yet.
These bones can be used to create wheels whose suspension moves in a manner more complex
than simply translating along the z-axis of the WheelP bone. First I'll show an example of a
translational constraint using a WheelT bone. This example is from the front wheel of the Nod
Recon Bike:

The presence of the WheelT bone in a wheel hierarchy causes the wheel to translate along the
Z-axis of the WheelT bone rather than the contact point bone. This is used for the front tire of the
Nod Recon Bike.

The rear wheel of a Recon Bike rotates along an arm. This can be accomplished by using a
WheelF bone. Below is a picture of that situation. The WheelF bone will be rotated about its
Y-axis to maintain contact between the wheel and the ground (see the picture for how to set it up).
This is probably the most complex type of wheel to create... Look at the Nod Recon Bike for
reference.

number)

vehicle) and their contact points must be contained inside the world box of the vehicle.

rolling)

down in the Top viewport)

Page 3 of 5 ---- Generated from Command and Conquer: Renegade Oficial Foruns


http://renegadeforums.com/index.php

the engine, append an 'S' to the wheels that steer, etc)

Turrets

Vehicles can have turrets which can fire weapons. The turret aiming motion is generated by the
game code as long as certain bones are present in the model. There are three types of bones
involved in controlling a turret. The 'Turret' bone will be rotated to set the turret's 'heading’. The
'‘Barrel' bone will be rotated to set the tilt of the weapon. And the 'Muzzle' bone will be used as the
location to create projectiles from. Below is a picture of a the turret from the GDI Mammoth Tank:
In the above picture, you can see that there are several muzzle bones. There can be up to two
MuzzleA bones and up to two MuzzleB bones. The 'A' bones are used for the primary weapon of
the vehicle and the 'B' bones are used for the secondary weapon of the vehicle. All of the bones
follow the convention that their axes should be aligned with the world axes; Z is up, X points
towards the front of the vehicle, Y points to the left of the vehicle. If you create your boxes in the
‘Top' viewport, they will be oriented in this fashion automatically. One improvement over the
linkage shown above would be to attach the V_Barrels mesh as a child of their Muzzle bones
because the game engine automatically applies a recoil to the muzzle bone (attaching them in
that way would cause the meshes to recoil when the weapon is fired).

(up to two MuzzleA and two MuzzleB bones)

the game logic controls the turret (i.e. the turret mesh should be attached to the turret bone so that
it will rotate properly)

Engine Special Effects
VTOL vehicles can control bones to display engine effects. Here are some examples of engine
effects:

(EngineFlame)

(EngineAngle)

Any bone present in the model which starts with the name "EngineFlame" will translate along its
Z-axis along with the vehicle's acceleration. Any bone present which starts with the name
"EngineAngle” will rotate about its Z-axis. In the screenshot below, the EngineAngle bone for one

Page 4 of 5 ---- Generated from Command and Conquer: Renegade Oficial Foruns


http://renegadeforums.com/index.php

of the Orca engines is selected. Below it is the EngineFlame bone and not shown is a skin which
has vertices attached to both bones and stretches as the EngineFlame translates.

Helicopter vehicles can use the EngineAngle bone to tilt their rotors as they fly forwards and
backwards. In addition, they can contain 'Rotor' bones which will spin about their Z-axis when in
flight. The parameters for how much these bones rotate and translate are all controlled through
settings in the level editor.

As a vehicle becomes damaged, the game code can un-hide particular bones in your model. This
can be used to show damage by attaching emitters to those bones since emitters in the model will
start emitting when the bone they are attached to becomes un-hidden. There is support for three
stages of damage, activated when the model reaches 25%, 50%, and 75% damage. When the
model loses 25% of its health, all bones whose names begin with DAMAGE25 will be un-hidden.
Once the object has lost 50% of its health, all bones whose names begin with DAMAGES0 will
also become un-hidden. And when it has lost 75%, the DAMAGE75 bones will un-hide.

Page 5 of 5 ---- Generated from Command and Conquer: Renegade Oficial Foruns


http://renegadeforums.com/index.php

